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Analysis of Wide-Band Stripline Circulators
by Integral Equation Technique

YALCIN AYASLI

Abstract—The analysis of wide-band Y-junction striplice circulators
using Green’s function method was reported in the literature. In this paper,
similar analyses are performed using an integral equation method and the

results are compared.
The boundary conditions used in the analyses are also discussed. A new

boundary comdition representing the actua! fields more precisely than
previously Is formulated and applied to the junction. The results obtained
with the new boundary comnditions are examined and compared with the
previous theoretical and experimental results,

The current and voltage distributions that are created at the ports under
the sssumed boundary conditicns are calculated and compared with the
known stripline and junctior modes.

In the formmliation, it is observed that the Green’s function is not unique
and it can be selected from a certain class of functions. This arbitrariness
is introduced into the formulation by means of a complex parameter Cg.
The effect of this parameter on the numerical results is investigated and it
is shown that in certain regions of the complex C; plane, the numerical
results converge cn the analytical results.

I. INTRODUCTION

U AND Rosenbaum [1] proposed the concept of

intrinsically wide-band stripline circulators and ex-
perimentally verified this with a 7-14 GHz octave band
design in 1974. Later, Ayter and Ayasli [2] reported the
design of another wide-band circulator at 2-4 GHz using
frequency-independent design curves. They also calcu-
lated and compared the theoretical responses of both
2-4 and 7-14 GHz designs using Green’s function tech-
nique.

In this paper, the theoretical performance of the two
wide-band designs mentioned above are examined by the
integral equation technique [3]. In this examination,
the boundary conditions are chosen consistent with the
Green’s function analysis to allow comparison with the
previous Ayter—Ayasli results [2]. The validity of these
boundary conditions are then investigated and a new set
which approximates the real distributions better is in-
troduced. The new set of boundary conditions are applied
to the junction and the results are compared with the
previous results.

The integral equation method is especially suitable for
the analysis of arbitrary shaped planar microwave circuits.
In the application of the method to such circuits, the free
space Green’s function has been consistently used [3], [4].
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In this paper it is pointed out that the Green function
suitable to the integral equation method is not unique
and, in fact, can be chosen from a certain class of func-
tions. This arbitrariness in the Green’s function is also
investigated and its effect on the accuracy and conver-
gence of the numerical results is examined.

II. INTEGRAL EQUATION FORMULATION

For the junction geometry shown in Fig. 1 and when
the thickness of the ferrite is much less than the wave-
length, the fields in the junction can be taken as indepen-
dent of z. Then only the z component of the electric field
can exist and it should satisfy the wave equation.

a2E,+ 10E, 1 9°E,
o2 r or 42 gp?

+KE,=0 (1)

where

radial wave propagation constant
effective permeability of the ferrite
Polder tensor elements.

k= wzé\’);fp'ef;
ety =(p*~ &%)/
by K

Following the analysis of Miyoshi et al. [3], the electric
field E, at some point 7, on the circumference of the
junction is given by

Ez(fM) =2 ffjwﬂeffG(kR )Hl(fo)dl

—2965(00500—j-5sin00)—§§§—f§2 2)
Contour C and the quantities such as 7,,, 7, and 8, are
shown in Fig. 2. If the tangential magnetic field compo-
nent H,(7) is assumed to be known along C, then (2) is a
Fredholm integral equation in terms of E,. G(kR), in this
equation is the two-dimensional Green’s function and can
be expressed in the most general form as

E(7)dl.

1
G(kR)= Cylo(kR) = 7 Yo(kR) 3)
where
Co a complex constant
R =|Fpr — Fol
Jo(kR)  first kind zeroth-order Bessel function
Yo(kR) second kind zeroth-order Bessel function.

In (3), the coefficient of Yy(kR) is determined to be —1/4
from the singularity condition at R=0. Because there is
no other condition imposed on G(kR), the constant C,
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Fig. 1. Junction geometry. (a) Top view. (b) Cross section.

Fig. 2. Contour C and related coordinates.

should be able to take any value (which could be complex
due to the assumed eY“? dependence).

In the literature [3], [4] C, is taken as —j/4 which
reduces (3) to the free space Green’s function as

G(kR)= —jHE(kR)/4 (4)

where H{P(kR) is the second kind zeroth-order Hankel
function.

Analytically one can readily show that the solution for
E (7,,) is independent of C,. However, these equations are
solved numerically and not analytically. To obtain a
numerical solution, the integral equation is reduced to a
finite size matrix equation. In this transformation trunca-
tion errors occur due to the finite matrix size used. In
addition, the usual sources of error peculiar to the numeri-
cal solutions are present. Thus the numerical solutions are
only an approximation to the analytical solutions and the
effect of the parameter C, on these numerical solutions is
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not obvious. The effect of C; on the numerical results is
discussed in Appendix A.

II1.

For the numerical evaluation of the integral equation
(2), the contour C can be divided into N equal segments.
If N is large enough, the length of the segments will be
small and the fields existing in the junction can be taken
as constant along each segment.

Total length of contour C is about a wavelength in the
operation band and, as an example, choosing N =36
would correspond to sampling a sine wave at 10° inter-
vals.

If the contour integral is thought of as the sum of N line
integrals over an interval w, (2) can be written as

NUMERICAL FORMULATION

N

€= J2wp '21 k; f G(kR;)d,
j=1""w,

~§2kejf

K ,
.(cos 0,~J m sin 0ij) G'(kRy)dl. (5)

J

In this equation, ¢, is the value of E, at the ith segment
and #; is the value of H, at the jth segment. Because ¢, and
hj are taken to be constant, they are taken outside the
integrations.

Equation (5) can be expressed as

. ,N

N N
2 Uyej = jgl T}jhj’ i=12,-- (6)

Jj=1
or as

[Ul[e]=[T][A] Q)

Comparing (5) and (6),

U,=8,+2k fw (cos8, - jﬁsinay)G'(kRij)dlj ®)
and
)
are found. If the A/’s are assumed to be known around the

junction circumference, then the ¢’s can be calculated
from (6).

Ty=/2pes [ G(kR,)d

7

IV. APPLICATION OF THE METHOD TO WIDE-BAND
DESIGNS AND BOUNDARY CONDITIONS

Wide-band designs operate in the approximate octave
band f,+f,<f<2f,. The designs require that the cou-
pling angle 2¥ is chosen as equal or wider than 60°. The
angle 2% is chosen as 60°, 65°, and 75° in references [1],
[2], and [5], respectively. As a result of wide coupling
angle, when the circulator circumference is divided into N
segments, more than one sampling point falls into the
input ports. As an example, for Wu~Rosenbaum [1] de-
sign, the junction circumference and the sampling points
are shown in Fig. 3, if N=36. The boundary conditions
on the junction are discussed in terms of this example.



202

PBN-79-802

N=36

Fig, 3. Junction geometry and sampling points for Wu-Rosenbaum
design and N =36.

A. Constant Magnetic Field at the Ports

The boundary condition used in the Green’s function
analysis can be expressed in terms of complex constants a,
b, and ¢ as in [6]

a, inportl
b, inport2
¢, inport3
0, elsewhere.

(10)

The electric field E, at the ports then comes out as a
function of the § variable and by averaging it along a
portwidth, an equivalent electric field is defined.

To be able to compare the results of the integral equa-
tion analysis with the results of the Green’s function
analysis, boundary conditions similar to the ones ex-
pressed in (10) are applied first. In terms of the tangential
magnetic fields at the sampling points and referring to the
numbers in Fig. 3, boundary conditions equivalent to (10)
become

a=hy=hy=hy=hy,=hys=hys
b=hyg=hy=ho=hy=hy=h;s
c=hy=hy3=hyy= hys= hag=hy;. (11
The average electric fields E;, E,, and E, at the ports can
then be calculated as
Ei=(ejteyteyteytes+ey)/6
Ey=(eppteteptete tes)/6
Ey=(epteyteytepstestey)/6. (12)
These average field quantities defined at the ports are also
related through the scattering matrix

a B v
S=|y a P (13)
B v a

of the junction. If it is assumed that the junction is excited
from port 1 and the other ports are terminated by
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matched loads, the average field quantities are [6]

a=(1—a)a™

b=—pa*
c=—vya* (14)
and
E,=Z(1+a)a*
E,=Z,fa*
Ey=2Z,ya"*. (15)

In these equations a™* represents the incident average
magnetic field 4, at port | and Z, is the wave impedance
of the input stripline. Without losing any generality a™
can be taken as unity and from (14) and (15):

a=2-E,/Z,
b=—-E,/Z,
c=—-FE,/Z, (16)

When (16) is combined with (7), N equations with the
electric fields e¢; as unknowns result. If this system of
equations is expressed as a matrix equation in the form of

[U][e]=[R] (17
then, for the example of Fig. 3,
U(1,J)=U(1J)+ [ LD+ T(1,2)+ T(1,3)
+ T(1,34)+ T(1,35)+ T(1,36) ] /6 Z,,
J=1,2,3,34,35,36, I=1,2,---,36 (18a)
U'(1,J)=U(LJ)+ [ T(1,10)+ T(I,11) + T(1, 12)
+ T(1,13)+ T(1,14)+ T(1,15)] /6 Z,,
J=10,11,12,13,14,15, I=1,2,---,36 (18b)
U'(1,J)=U(1,J)+[ T(1,22) + T(1,23) + T(1,24)
+ T(1,25)+ T(1,26) + T(1.27) | / 6 Z,,
J=22,23,24,25,26,27, I=1,2,---,36 (18¢c)
and
R()=2[T(1,1)+ T(1,2)+ T(1,3)+ T(1,34)
+T(1,35)+ T(1,36) ], I=1,2,---,36 (19)
can be written.
From the solution of (17), the electric field E, sampled
at 36 points along the junction circumference can be

found. Using these fields, the scattering matrix elements
a, B, and y can be found as

a=(e;+e,+e;+ey+e+ey)/6Z2,—1
B=(epte teptes+ey,tes)/6Z,

y=(en+ey+eyutextextenZ, (20)

The performance of the junction as a circulator can then

be calculated as

Return loss =20log, ||

Insertion loss =20log,,| 8|

Isolation =20log, |y

@y
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B. Constant Electric Field at the Ports

For the Green’s function analysis, the boundary condi-
tions given in (10) are the most convenient to apply. But
they do not truly represent the actual field distributions at
the ports.

The TEM voltage and current distributions that exist
on a stripline [7] are shown in Fig, 4. Since no z-variation
for the fields is assumed, then H, and E, should have
distributions similar to current and voltage distributions,
respectively. In the region where the ports joint the junc-
tion, however, higher order modes exist and modify these
distributions. In spite of this, the distributions in Fig. 4
suggest that taking the electric field distribution as con-
stant and letting the magnetic field distribution free for
any value it takes seems more meaningful. Thus a new
and more realistic boundary condition is

E,, in port 1
E,=! E,, in port 2
E,, in port 3 (22)
and
H,=0, outside the ports. (23)

Using (22) and (23) instead of (10) and following a '

similar routine, a matrix equation of the form (17) can be
obtained. Due to the mixed boundary conditions used,
however, the unknowns of the problem become the
tangential magnetic field at the ports and the electric field
outside the ports.

V. NuUMERICAL RESULTS

The integral equation method is used for the analysis of
two wide-band circulator designs reported in the literature
{1], [2]. For each design, two different sets of boundary
conditions described above are separately examined for
Co= +300 (see Appendix A for the choice of Cy).

The resonant frequencies of the disk-shaped circuit is
calculated first to check the computational accuracy. The
equation which gives the resonance frequencies is

det[ U] =0. (24)

Due to computational errors, (24) is not completely satis-
fied and the frequencies which give the minimum of
|det{U]| can be taken as the eigenvalues [3]. The exact
eigenvalues, on the other hand are the roots of

, k nJ,(kRy)
IJ n(kRO)l B k RO

Thus the exact and calculated resonance frequencies can
be compared giving information on the computational
errors involved. From this comparison, it is found that for
N =33, H;=3300 Oe, 47M,=1300 G, R,=0.0039 m, and
Co=—j/4, the difference between the exact and calcu-
lated frequencies is less than 0.15 percent. For similar
parameters, Miyoshi e al. [3] reports a 2-percent com-
putational error. This improvement in the accuracy of the
numerical results is achieved by using (8) and (9) instead
of the approximate expressions in the calculation of diag-
onal terms for the [U] and [T'] matrices.

=0, n=0,1,2,---.(25)
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Fig. 4. Calculated voltage and current distributions on a typical strip-

line configuration (in relative units) [7].

A. Constant Magnetic Field at the Ports

The numerical results obtained for the Wu—Rosenbaum
design [1] with constant magnetic field boundary condi-
tion at the ports are shown in Fig. 5. On the same figure
the results obtained with the Green’s function analysis [2]
are also shown for comparison.

The results obtained by the two different methods are
in good agreement. In the analysis of reference [2], the
Green’s function is calculated by using the first three
terms of the infinite series expansion; therefore, a wider
resonance is not surprising, The degradation in the perfor-
mance of the junction around 13.4 GHz is present in both
results.

The integral equation technique is also applied to
Ayter—Ayasli design [2] and the results are shown in Fig.
6 together with the results of the Green’s function analy-
sis. In this application, the contour C is divided into 30
equal segments with 6 sampling points left for each port.
This sets ¥=0.628 rads. The actual ¥ used in the design
is 0.646 rad. The difference between the coupling angles ¥
used in the two methods of analysis makes point by point
comparison difficult and causes the offset in the center
frequencies seen in Fig. 6. The general shape of the curves
are, however, in agreement.

B. Constant Electric Field at the Ports

The two wide-band designs of the previous section are
also investigated using the constant electric field
boundary condition. The results are shown in Figs. 7 and
8. The shift to higher frequencies seen in Fig. 8 should be
due to the slightly different ¥ value used in the model.

Comparing Figs. 7, 8 and 5, 6, respectively, a general
decrease in isolation and a general increase in insertion
loss are observed. Although the reported experimental
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of these fringing fields is included in the model by de-
fining an effective disk radius as [3]

R = R,+0.1788 X D (26)

where D is the ferrite disk thickness. To allow comparison
with the previous results {2], this correction was not made
for the results of Figs. 5 and 6. If this correction were
made for these figures, the center frequencies would move
to 9.6 GHz and 2.65 GHz, respectively.

C. Calculated Field Distributions at the Ports

In comparing the results obtained with the two different
boundary conditions, it is also instructive to examine the
field distributions which form at the ports, checking
whether or not they violate any of the previous assump-
tions.

In Fig. 9, the electric field distributions at the ports are
shown for the Wu—Rosenbaum design {1] with the con-
stant magnetic field boundary condition. On the other
hand, the magnetic field distributions for the same design
with constant electric field boundary condition are shown
in Fig. 10. In both figures, the distributions are calculated
at the center frequencies.

To be able to interpret these distributions better, the
modes that exist in the junction are shown in Fig. 11 [6].
From the examination of these modes, it is clear that
fields must have symmetry only with respect to the iso-
lated port (port 3). At the other ports, the fields are not
symmetric with respect to the port center, and instead
increase in the direction away from the isolated port.

In Figs. 9 and 10, the calculated field distributions
agree with the qualitative discussion above. In the isolated
port (port 3), however, since the sum of the two junction
modes results in a null field, the electric and magnetic
field distributions must be determined by the stripline
mode. The magnetic field distribution at port 3 in Fig. 10
is in good agreement with the current distribution in Fig.
4. The electric field distribution at port 3 in Fig. 9,
however, disagrees with the voltage distribution in Fig. 4,
the same way the constant magnetic field boundary condi-
tion disagrees with the current distribution in the same
figure.

VI

The integral equation method is applied to the analysis
of wide-band circulators. In this analysis, the junction is
first modeled with boundary conditions similar to the
conditions used in the previous Green’s function analysis
[2]. The results obtained by these two different methods
are then compared. This comparison shows that the re-
sults are in agreement.

In the integral equation analysis, it is noted that a more
realistic boundary condition can be formulated and ap-
plied to the junction. The results obtained with the dif-
ferent boundary conditions are then compared, showing
that the new boundary condition increases the agreement
between the theoretical and experimental results.

CONCLUSION
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Fig. 9. Calculated electric field distribution at the ports for Wu-—
Rosenbaum design with constant magnetic field boundary
condition (in relative units).
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Fig. 10. Calculated magnetic field distribution at the ports for
Wu-Rosenbaum design with constant electric field condition (in rela-
tive units).

The theoretical circulator performance obtained for the
Wu-Rosenbaum design [1] with constant electric field
boundary condition does not show any deterioration at

13.4 GHz as observed in both Green’s function and in-
tegral equation results with constant magnetic field
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boundary condition. This means that the deterioration is
an effect strictly due to the constant magnetic field
boundary condition used.

The magnetic or electric field distributions created at
the ports under two different boundary conditions are
also calculated and compared with the modes of the
junction and of the stripline. From this comparison, it is
observed that only the constant electric field boundary
condition at the ports does not lead to any inconsistencies.

For analyses based on the solution of integral equations
in the form of (2), it is shown that an arbitrary parameter
C, can be introduced into the Green’s function used. The
physical results should ideally be independent of this
parameter and there are no a priori criteria which dictates
a certain choice for it. The integral equation is then
transformed to a finite size matrix equation and the effect
of this parameter on the numerical solutions is investi-
gated.

The computer results of this investigation show that by
finding a region where the results are independent of C,
the difference between the numerical and theoretical re-
sults can be decreased and a convergence between them
can be obtained. In this region of convergence, the
numerical results become independent of the number of
equations used and thus a minimum number of equations
showing a C, independent region in their solution can be
used.

The numerical results also indicate that in the process
of increasing C, to find a region of convergence, the
stability of the matrix equations decreases linearly with
C,- However, while the condition number of the system is
increasing steadily to rather large values, very little change
is observed in the numerical results. Clearly, a com-
promise seems possible for the proper choice of C, The
convergence obtained through the arbitrariness of C; is a
property of the integral equation formulation and thus its
application is not limited to two-dimensional problems.

APPENDIX A

In this appendix, the effect of the parameter C, on the
numerical results is investigated. In Fig. 12, the calculated
values of the first resonance frequency for N=33, R,=
0.0039 m, H,=3300 O¢, and 47M,=1300 G are plotted
for several values of C, as it is varied along the *real
axes. From this figure, it is seen that as C, is increased,
the frequencies obtained from the minimum of |det[U]|
converge on the exact value of 4.37080 GHz calculated
from (25) for n=1. Six significant number accuracy is the
limit of the Bessel’s function expansions and the single
precision calculations used.

In Section I, it is pointed out that the physical results,
when obtained analytically, should be independent of C,,.
But the integral equation is solved numerically by trans-
forming it to a finite set of linear equations. As a result of
this transformation, the more numerical solutions con-
verge to the exact integral equation solutions, the less they
should depend on the parameter C,.
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Fig. 11. Junction modes at the center frequency (to obtain isolation at
port 3, the field configurations shown at (a) and (b) should be
superimposed) [6).

In Fig, 13, the effect of C, on the diagonal element of
the scattering matrix is shown for the Ayter—Ayasli design
at a single frequency. This figure shows that as C; is
increased along the *real and *imaginary axes on the
complex C, plane, the magnitude of a converges to a
certain value. Convergence occurs fastest on the real C,
axis. After convergence is reached, as C, is varied in a
rather large region from + 50 to + 1000, |a| changes only
2 percent.

In Fig. 14, the variation of |a| with C, as the latter is
varied along the +real is shown for the four cases men-
tioned in Section V. For these four cases, the convergence
is clearly seen for C, larger than +200. Above this value,
the results are nearly independent of C,. This indepen-
dence means that in this C;, region, the numerical results
behave as expected from the analytical solutions and thus
the matrix equation is modeling the junction properly.

In Figs. 13 and 14, the variation of |a| with the parame-
ter C, are shown only at one frequency near midband. To
see if the convergence obtained for certain C, values is
sensitive to the parameters of the model, the behavior of
the circulator for one of the four cases above is shown in
Fig. 15 over the entire frequency band for two different
values of C,. From this figure, it is seen that the results for
Co= +300 and C,= +500 are in close agreement over the
band of operation.
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Fig. 13. Variation of |a| as the parameter C,, is varied along the four
axes in the complex C, plane for Ayter-Ayasli design and constant
magnetic field boundary condition.

In the C, region where the results converge to a certain
value, the numerical results should also be independent of
N, the number of sampling points. This must be the case
because if the matrix equations are modeling the integral
equation properly, the physical results should not depend
on N.

In Fig. 16, for Wu-Rosenbaum design and Cy= +300,
the circulator behavior is compared for two different
values of N. The two sets of curves are in good agreement.

In Fig. 17, on the other hand, the same comparison is
made for C,=0. It is seen that the results for this value of
C, do not converge for these two different N values.
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Fig. 17. Comparison of results on Wu—Rosenbaum design with con-
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N(Cy=0).

The effect of C, on the matrix stability is also investi-
gated. The matrix condition numbers can be used to
indicate regions of instability for the matrix equation
system modeling the integral equation. In Fig. 18, the
condition number calculated using the maximum norm [8]
is plotted as a function of C, for the Ayter—Ayasli design.

The calculation of the condition number of a matrix
requires explicit knowledge of its inverse. Another quan-
tity which is claimed to give similar information on the
condition of the matrix without requiring an explicit in-
verse is called the pivot ratio (PR) [9]. This quantity is
defined as the ratio of the magnitudes of the first to the
last pivot elements chosen in a Gaussian elimination pro-
cedure. The PR for the same example is also plotted on
Fig. 18.

From Fig. 18, it is seen that the condition of the matrix
equations deteriorates linearly with the parameter C,. For
this reason, C, should not be increased to values larger
than necessary for the rapid convergence.
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