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Analysis of Wide-Band Stripline Circulators
by Integral Equation Technique

YALCIN AYASLI

AMnu&-The fmafysfs of wide-bad Y-jsmctkm striplfne cfrasfators

usfngGreen’s fonction method wss reported fn the literature. In thfs pspw,

sfmilsr analyses are performed usffkg ao integraf equation method and the

m*w~

~k*mndtiom-h*@_mti*_Amw
Mm* sxnwfition representing * m%oaf fields more precfsdy tbso
previously fs formulated and sppfied to the junction. The resufts &tained
with the new boundary amdftions are exnmined srul compared with the
prevkms theoretkaf rmd experimental resufts.

Ttse current aod vokage rffstrflmtions that sre crsded at the parts onder
ths assumed bormdsry conditions sre cakrdsted nod compared with the
known striphe sd jwrwtion modes.

In the formufatioIL it W obaewed that tbe Green’s function fs not unique

and it can bs selected from a certafn cbrss of functions. ‘flds srbitminess

is fntrohced hto the formsdation by SHUSSof a complex parameter Cw

The sMfectof tlds psrsmeter on the mrmerfcaf resrdts is investigated and it

is shown that fn efwtahs regions of the amrplex CO pl~ ths mrmsrical

resufts clmvergw MSthe anafytksf dts.

L INTRODUCTION

w U AND Rosen&mrn [1] proposed the concept of

intrinsically wide-band stripline circulators and ex-

perimentally verified this with a 7– 14 GHz octave band

design in 1974. Later, Ayter and Ayasli [2] reported the

design of another wide-band circulator at 2–4 GHz using

frequency-independent design curves. They also calcu-

lated and compared the theoretical responses of both

2–4 and 7–14 GHz designs using Green’s function tech-

nique.

In this paper, the theoretical performance of the two

wide-band designs mentioned above are examined by the

integral equation technique [3]. In this examination,

the boundary conditions are chosen consistent with the

Green’s function analysis to allow comparison with the

previous Ayter–Ayasli results [2]. The validity of these

boundary conditions are then investigated and a new set

which approximates the real distributions better is in-

troduced. The new set of boundary conditions are applied

to the junction and the results are compared with the
previous results.

The integral equation method is especially suitable for

the analysis of arbitrary shaped planar microwave circuits.

In the application of the method to such circuits, the free

space Green’s function has been consistently used [3], [4].
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In this paper it is pointed out that the Green function

suitable to the integral equation method is not unique

and, in fact, can be chosen from a certain class of func-

tions. This arbitrariness in the Green’s function is also

investigated and its effect on the accuracy and conver-

gence of the numerical results is examined.

IL INTEGRAL EQUATION FORMULATION

For the junction geometry shown in Fig. 1 and when

the thickness of the ferrite is much less than the wave-

length, the fields in the junction can be taken as indepen-

dent of z. Then only the z component of the electric field

can exist and it should satisfy the wave equation.

32EZ +#3E~+ 1 a2E
—~+k2Ez=0

arz r i3r r2 ae2
(1)

where

‘2= a2%~Peff radial wave propagation constant

P.ff = ( P2 – K2)/P effective pe~eability of the fefite
p, K Polder tensor elements.

Following the analysis of Miyoshi et al. [3], the electric

field E= at some point ?~ on the circumference of the

junction is given by

(–24 Coseo+rleo
)

aG$~) Ez(Fo)dL (2)
c

Contour C and the quantities such as FM, FO,and 00 are

shown in Fig. 2. If the tangential magnetic field compo-

nent H1(?O) is assumed to be known along C, then (2) is a

Fredhohn integral equation in terms of Ez. G(kR), in this

equation is the two-dimensional Green’s function and can

be expressed in the most general form as

G(H?) = C#o(kR) – ; Yo(kR) (3)

where

co a complex constant

R =IFM-FOI

Jo(kR) first kind zeroth-order Bessel function

YO(k17) second kind zeroth-order Bessel function.

In (3), the coefficient of Yo(kR) is determined to be – 1/4

from the singularity condition at R =0. Because there is
no other condition imposed on G(kR ), the constant C’O
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Fig, 2. Contour C and related coordinates.

should be able to take any value (which could be complex

due to the assumed e~”’) dependence).

In the literature [3], [4] Co is taken as –j/4 which

reduces (3) to the free space Green’s function as

G(M) = –jH~2)(kR)/4 (4)

where HJ2)(IcR) is the second kind zeroth-order Hankel

function.

Analytically one can readily show that the solution for

Ez(}~) is independent of CW However, these equations are

solved numerically and not analytically. To obtain a

numerical solution, the integral equation is reduced to a

finite size matrix equation. In this transformation trunca-

tion errors occur due to the finite matrix size used. In

addition, the usual sources of error peculiar to the numeri-

cal solutions are present. Thus the numerical solutions are

only an approximation to the analytical solutions and the

effect of the parameter Co on these numerical solutions is
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not obvious. The effect of Co on the numerical results is

discussed in Appendix A.

III. NUMERICM FORMULATION

For the numerical evaluation of the integral equation

(2), the contour C can be divided into N equal segments.

If N is large enough, the length of the segments will be

small and the fields existing in the junction can be taken

as constant along each segment.

Total length of contour C is about a wavelength in the

operation band and, as an example, choosing N= 36

would correspond to sampling a sine ‘wave at 10° inter-

vals.

If the contour integral is thought of as the sum of N line

integrals over an interval w, (2) can be written as

ei=j2uP.,, ~ h~~ G(kR@)d4
j=l %

In this equation, ei is the value of E= at the ith segment

and ~. is the value of H1 at thejth segment. Because ei and

hi are taken to be constant, they are taken outside the

integrations.

Equation (5) can be expressed as

$j~Jq= : ~Jhj, i=l,2, ”.”,N
j=l j=l

or as

[U][e]=[T][h].

Comparing (5) and (6),

and

(6)

(7)

(8)

(9)

are found. If the hts are assumed to be known around the

junction circumf&ence, then the ~’s can be calculated

from (6).

IV. APPLICATION OF THE METHOD TO WIDE-BAND

DESIGNS AND BOUNDARY CONDITIONS

Wide-band designs operate in the approximate octave

band j +fm <f < 2j~. Tbe designs require that the cou-

pling angle 2’1 is chosen as equal or wider than 60°. The

angle 2* is chosen as 60°, 65°, and 75° in references [1],

[2], and [5], respectively. As a result of wide coupling

angle, when the circulator circumference is divided into N

segments, more than one sampling point falls into the
input ports. As an example, for Wu–Rosenbaum [1] de-

sign, the junction circumference and the sampling points

are shown in Fig. 3, if N= 36. The bounda~ conditions

on the junction are discussed in terms of this example.
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Fig. 3. Junction geometry and mmpling points
design and N=36.

A. Const&t Magnetic Field at the Ports

The boundary condition used in the

analysis can be expressed in terms of complex constants a, equations is expressed as a matrix equation in the form of

b, and c as in [6] [u’][e]= [R] (17)

In these equations a+ represents the incident average

magnetic field H1 at port 1 and .Z~ is the wave impedance

of the input stripline. Without losing any generality a+

can be taken as unity and from (14) and (15):

a=2– E1/Zd
for Wu-Rosenbaum b= –E2/Z~

c= –E3/Z@ (16)

When (16) is combined with (7), N equations with the

Green’s function electric fields ei as unknowns result. If this system of

[

a, in port 1

~ = b, in port 2
1

c, in port 3

[O, elsewhere.

then, for the example of Fig. 3,

(10) U’(I,J) = U(I,J) + [ T(I, 1) + T(I,2) + T(1, 3)

+ T(1, 34)+ T(1, 35)+ T(I> 36)] /6Zd,

The electric field E= at the ports then comes out as a

function of the 8 variable and by averaging it along a

portwidth, an equivalent electric field is defined.

To be able to compare the results of the integral equa-

tion analysis with the results of the Green’s function

analysis, boundary conditions similar to the ones ex-

pressed in (10) are applied first. In terms of the tangential

magnetic fields at the sampling points and referring to the

numbers in Fig. 3, boundary conditions equivalent to (10)

become

a=h1=h2= h~=h34=h35=h~6

b=hlo=hll=hlz= hl~=hlq=hlf

c = hzz= hz~= hzb= hz~= h26= h27. (11)

J=1,2,3,34,35,36, 1=1,2,... ,36 (l$a)

U’(I,J) = U(I,J) + [ 7’(1, 10) + T(1, 11) i- T(1, 12)

i- T(I, 13) + T(I, 14) + T(I, 15)] /6Z~,

J= 10,11,12, L3,14, 15, 1=1,2,... ,36 (18b)

U’(I,J) = U(l,J) + [ T(1, 22) + T(I, 23) + T(I, 24)

+ T(I,25) + T(I,26) + T(I,27)]/6Z~,

J=22,23,24,25,26,27, 1= 1,2,... ,36 (18c)

and

l?(l) =2[ T(I, 1) + 7-(1,2) + 2-(1, 3) + T(Z,34)

+ T(Z,35) + T(1,36)], 1=1,2,.. . ,36 (19)

can be written.
The average electric fields El, E2, and EB at the ports can From the solution of (17), the electric field E= sampled
then be calculated as at 36 points along the junction circumference can be

El= (el + e2+ e3+ e34+ e35+ e36)/6 found. Using these fields, the scattering matrix elements

I!72= (elo+ ell -I- e12+ el~+ eld+ e15)/6
a, P, and y can be found as

E3 = (ezz + ez~+ e24+ ez~+ e26+ ezT)/6. (12)
a =(el + ez+ es + e~q+ e~~+ e36)/6Z~– 1

These average field quantities defined at the ports are also
B= (elO+ e,, + e,z+ el, + el~+ e,~)/6Z~

related through the scattering matrix y = (eZZ+ ’23 + ’24 + e25 + e26 + 6?27)z& (20)

[1~/3Y
The performance of the junction as a circulator can then

s=ya~ (13) be calculated as

pya Return loss = 2010g10[al

of the junction. If it is assumed that the junction is excited
Insertion loss = 2010glol @1

from port 1 and the other ports are terminated by Isolation = 2010g101yl. (21)
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B. Constant Electric Field at the Ports

For the Green’s function analysis, the boundary condi-

tions given in (10) are the most convenient to apply. But

they do not truly represent the actual field distributions at

the ports.

The TEM voltage and current distributions that exist

on a stripline [7] are shown in Fig. 4. Since no z-variation

for the fields is assumed, then HI and Ez should have

distributions similar to current and voltage distributions,

respectively. In the region where the ports joint the junc-

tion, however, higher order modes exist and modify these

distributions, In spite of this, the distributions in Fig. 4

suggest that taking the electric field distribution as con-

stant and letting the magnetic field distribution free for

any value it takes seems more meaningful.

and more realistic boundary condition is

{

El, in port 1

E== E2, in port 2

E3, in port 3

and

HI= O, outside the ports.

Using (22) and (23) instead of (10) and

Thus a new

(22)

(23)

following a

similar ~outine, a mat~ equation of” the form (17) can be

obtained. Due to the mixed boundary conditions used,

however, the unknowns of the problem become the

tangential magnetic field at the ports and the electric field

outside the ports.

V. NuhmRIcm RESULTS

The integral equation method is used for the analysis of

two wide-band circulator designs reported in the literature

[1], [2]. For each design, two different sets of boundary

conditions described above are separately examined for

CO= +300 (see Appendix A for the choice of CO).

The resonant frequencies of the disk-shaped circuit is

calculated first to check the computational accuracy. The

equation which gives the resonance frequencies is

det[ U] =0. (24)

Due to computational errors, (24) is not completely satis-

fied and the frequencies which give the minimum of

Idet[ U]l can be taken as the eigenvalues [3]. The exact

eigenvalues, on the other hand are the roots of

K nJ.(kRO) so
lJ;(kRo)l - ~ kRo , n=0,1,2, --- (25)

Thus the exact and calculated resonance frequencies can

be compared giving information on the computational

errors involved. From this comparison, it is found that for

N= 33, Hi= 330Q Oe, 47rM, = 1300 G, RO=0.0039 m, and

co=–j/4, the difference between the exact and calcu-

lated frequencies is less than 0.15 percent. For similar

parameters, Miyoshi et al. [3] reports a 2-percent com-
putational error. This improvement in the accuracy of the

numerical results is achieved by using (8) and (9) instead

of the approximate expressions in the calculation of diag-

onal terms for the [U] and [T] matrices.
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Fig. 4. Calculated voltage and current distributkms on a typical strip-
line configuration (in relative units) [7].

A. Constant Magnetic Field at the Ports

The numerical results obtained for the Wu–Rosenbaum

design [1] with constant magnetic field boundary condi-

tion at the ports are shown in Fig. 5. On the same figure

the results obtained with the Green’s function analysis [2]

are also shown for comparison.

The results obtained by the two different methods are

in good agreement. In the analysis clf reference [2], the

Green’s function is calculated by using the first three

terms of the infinite series expansion; therefore, a wider

resonance is not surprising. The degradation in the perfor-

mance of the junction around 13.4 GHz is present in both

results.

The integral equation technique is also applied to

Ayter–Ayasli design [2] and the results are shown in Fig.

6 together with the results of the Green’s function analy-

sis. In this application, the contour C is divided into 30

equal segments with 6 sampling points left for each port.

This sets 9!= 0.628 rads. The actual ~’ used in the design

is 0.646 rad. The difference between the coupling angles *

used in the two methods of analysis makes point by point

comparison difficult and causes the offset in the center

frequencies seen in Fig. 6. The general shape of the curves

are, however, in agreement.

B. Constant Electric Field at the Ports

The two wide-band designs of the lprevious section are

also investigated using the constant electric field

boundary condition. The results are shown in Figs. 7 and

8. The shift to higher frequencies seen in Fig. 8 should be

due to the slightly different* value used in the model.

Comparing Figs. 7, 8 and 5, 6, respectively, a general

decrease in isolation and a general increase in insertion
loss are observed. Although the reported experimental
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results [1], [2] include the effect of the matching sections

and thus carmot be directly compared with the curves of

Figs. 7 and 8, these observed tendencies imprcsve the

agreement between the experimental and calculated con-

stant electric field boundary condition results.

The boundary conditions require H!= O outside the

ports, when actually fringing fields exist there. The effect
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of these fringing fields is included in the model by de-

fining an effective disk radius as [3]

R,ff=RO+0.1788x D (26)

where D is the ferrite disk thickness. To allow comparison

with the previous results [2], this correction was not made

for the results of Figs. 5 and 6. If this correction were

made for these figures, the center frequencies would move

to 9.6 GHz and 2.65 GHz, respectively.

C. Calculated Field Distributions at the Ports

In comparing the results obtained with the two different

boundaqr conditions, it is also instructive to examine the

field distributions which form at the ports, checking

whether or not they violate any of the previous assump-

tions.

In Fig. 9, the electric field distributions at the ports are

shown for the Wu–Rosenbaum design [1] with the con-

stant magnetic field boundary condition. On the other

hand, the magnetic field distributions for the same design

with constant electric field boundary condition are shown

in Fig. 10. In both figures, the distributions are calculated

at the center frequencies.

To be able to interpret these distributions better, the

modes that exist in the junction are shown in Fig. 11 [6].

From the examination of these modes, it is clear that

fields must have symmetry only with respect to the iso-

lated port (port 3), At the other ports, the fields are not

symmetric with respect to the port center, and instead

increase in the direction away from the isolated port.

In Figs, 9 and 10, the calculated field distributions

agree with the qualitative discussion above. In the isolated

port (port 3), however, since the sum of the two junction

modes results in a null field, the electric and magnetic

field distributions must be determined by the stripline

mode. The magnetic field distribution at port 3 in Fig. 10

is in good agreement with the current distribution in Fig.

4. The electric field distribution at port 3 in Fig. 9,

however, disagrees with the voltage distribution in Fig. 4,

the same way the constant magnetic field boundary condi-

tion disagrees with the current distribution in the same

figure.

VI. CONCLUSION

The integral equation method is applied to the analysis

of wide-band circulators. In this analysis, the junction is
first modeled with boundary conditions similar to the

conditions used in the previous Green’s function analysis

[2]. The results obtained by these two different methods

are then compared. This comparison shows that the re-

sults are in agreement.

In the integral equation analysis, it is noted that a more

realistic boundary condition can be formulated and ap-

plied to the junction. The results obtained with the dif-

ferent boundary conditions are then compared, showing

that the new boundary condition increases the agreement

between the theoretical and experimental results.
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The theoretical circulator performance obtained for the

Wu–Rosenbaum design [1] with constant electric field

boundary condition does not show any deterioration at

13.4 GHz as observed in both Green’s function and in-

tegral equation results with constant magnetic field
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boundary condition. This means that the deterioration is

an effect strictly due to the constant magnetic field

boundary condition used.

The magnetic or electric field distributions created at

the ports under two different boundary conditions are

also calculated and compared with the modes of the

junction and of the stripline. From this comparison, it is

observed that only the constant electric field boundary

condition at the ports does not lead to any inconsistencies.

For analyses based on the solution of integral equations

in the form of (2), it is shown that an arbitrary parameter

CO can be introduced into the Green’s function used. The

physical results should ideally be independent of this

parameter and there are no a priori criteria which dictates

a certain choice for it. The integral equation is then

transformed to a finite size matrix equation and the effect

of this parameter on the numerical solutions is investi-

gated.

The computer results of this investigation show that by

finding a region where the results are independent of Co,

the difference between the numerical and theoretical re-

sults can be decreased and a convergence between them

can be obtained. In this region of convergence, the

numerical results become independent of the number of

equations used and thus a minimum number of equations

showing a Co independent region in their solution can be

used.

The numerical results also indicate that in the process

of increasing Co to find a region of convergence, the

stability of the matrix equations decreases linearly with

C@ However, while the condition number of the system is

increasing steadily to rather large values, very little change

is observed in the numerical results. Clearly, a com-

promise seems possible for the proper choice of C’@ The

convergence obtained through the arbitrariness of Co is a

property of the integral equation formulation and thus its

application is not limited to two-dimensional problems,

APPENDIX A

In this appendix, the effect of the parameter CO on the

numerical results is investigated. In Fig. 12, the calculated
values of the first resonance frequency for N= 33, -R.=

0.0039 m, Hi= 3300 Oe, and 4wM, = 1300 G are plotted

for several values of Co as it is varied along the *real

axes. From this figure, it is seen that as Co is increased,

the frequencies obtained from the minimum of Idet[ U]l

converge on the exact value of 4.37080 GHz calculated

from (25) for n =1. Six significant number accuracy is the

limit of the Bessel’s function expansions and the single

precision calculations used.

In Section 11, it is pointed out that the physical results,

when obtained analytically, should be independent of C@

But the integral equation is solved numerically by trans-

forming it to a finite set of linear equations, As a result of

this transformation, the more numerical solutions con-

verge to the exact integral equation solutions, the less they

should depend on the parameter Co.

0.)?.0

(a)

0, @ electric field

+ magnetic field

I

w= -ir/2

b)

Fig. 11. Junction modes at the center frequency (to obtain isolation at
port 3, the field configurations shown at (a) and (b) should be
SUpW@X2Sed~ [6].

In Fig. 13, the effect of Co on the diagonal element of

the scattering matrix is shown for the Ayter–Ayasli design

at a single frequency. This figure shows that as Co is

increased along the &real and A imaginary axes on the

complex Co plane, the magnitude of a converges to a

certain value. Convergence occurs fastest on the real Co

axis. After convergence is reached, as Co is varied in a

rather large region from -i- 50 to + 10CfO,Ial changes only

2 percent.

In Fig. 14, the variation of Ial with Co as the latter is

varied along the + real is shown for the four cases men-

tioned in Section V. For these four cases, the convergence

is clearly seen for Co larger than +200. Above this value,

the results are nearly independent of C@ This indepen-
dence means that in this CO region, the numerical results

behave as expected from the analytical solutions and thus

the matrix equation is modeling the junction properly.

In Figs. 13 and 14, the variation of ~al with the parame-

ter Co are shown only at one frequency near midband. To

see if the convergence obtained for certain Co values is

sensitive to the parameters of the model, the behavior of

the circulator for one of the four cases above is shown in

Fig. 15 over the entire frequency band for two different

values of C@ From this figure, it is seen that the results for

CO=+300and Co= +500 are in close agreement over the

band of operation.
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1,

h the CO region where the results converge to a certain

value, the numerical results should also be independent of

N, the number of sampling points. This must be the case

because if the matrix equations are modeling the integral

equation properly, the physical results should not depend

on N.

In Fig. 16, for Wu–Rosenbaum design and Co= +300,

the circulator behavior is compared for two different

values of N. The two sets of curves are in good agreement.

In Fig. 17, on the other hand, the same comparison is

made for Co= O. It is seen that the results for this value of

COdo not eonverge for these two different N values.
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The effect of CO on the matrix stability is also investi-

gated. The matrix condition numbers can be used to

indicate regions of instability for the matrix equation

system modeling the integral equation. In Fig. 18, the

condition number calculated using the maximum norm [8]

is plotted as a function of COfor the Ayter-Ayasli design.

The calculation of the condition number of a matrix

requires explicit knowledge of its inverse. Another quan-

tity which is claimed to give similar information on the

condition of the matrix without requiring an explicit in-

verse is called the pivot ratio (PR) [9]. This quantity is

defined as the ratio of the magnitudes of the first to the

last pivot elements chosen in a Gaussian elimination pro-

cedure. The PR for the same example is also plotted on

Fig. 18.

From Fig. 18, it is seen that the condition of the matrix

equations deteriorates linearly with the parameter C@ For

this reason, CO should not be increased to values larger

than necessary for the rapid convergence.
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